
UNIVERSITY

Center for Air Sea Technology

RE-ENGINEERING A
RELATIONAL DATABASE

SYSTEM TO PRODUCE
A PROTOTYPE

OBJECT-ORIENTED
GEOPHYSICAL

DATABASE SYSTEM
by

Julia Hodges, Shekar Ramanathan, and Susan Bridges

Technical Report 01-95

20 June 1995

Prepared for: Office of Naval Research (Code 1242)
Under Research Grant N00014-92-J-4109

%JUL 1995" "i

Approved for public release; distribution is unlimited.
Mississippi State University Center for Air Sea Technology

Stennis Space Center, MS 39529-6000

LO

TECHNICAL REPORT 01-95

RE-ENGINEERING A RELATIONAL DATABASE SYSTEM
TO PRODUCE A PROTOTYPE OBJECT-ORIENTED

GEOPHYSICAL DATABASE SYSTEM

by

Julia Hodgesi, Shekar Ramanatham2, and Susan Bridges3

lAssociate Professor, Mississippi State University, Department of Computer
Science, Mississippi State, MS 39762-9637

2Graduate Research Assistant, Mississippi State University, Department of
Computer Science, Mississippi State, MS 39762-9637

3Assistant Professor, Mississippi State University, Department of Computei
Science, Mississippi State, MS 39762-9637

20 June 1995

Accesion For i NTIS CRA&!
DTIC TAB □
Unannounced [j
Justification

By
Distributor

Availabiiitv Goto:

Dist

M

Avail and/or
Special

This research was supported by the Department of the Navy, Office of the Chief
of Naval Research, under Contract/Research Grant Number N00014-92-J-4109
with the MSU Center for Air Sea Technology. The information contained in this
publication does not necessarily reflect the position of the policy of the United
State Government. No official endorsement should be inferred.

DTTS ^AU««^0®08

1

TABLE OF CONTENTS

Page

ABSTRACT • l

INTRODUCTION l

MOTIVATION FOR OBJECT ORIENTED APPROACH 2

DESCRIPTION OF THE GEOPHYSICAL DATA 6

DESIGN OF THE OBJECT-ORIENTED GRID DATABASE
SCHEMA 7

THE RE-ENGINEERING PROCESS: MAPPING FROM
RELATIONAL TO OBJECT-ORIENTED 8

THE SCHEMA MAPPING PROCESS 9

Reverse Engineering: From a Relational Schema to
an ER Schema 10

Forward Engineering: From an ER Schema to an
Object-Oriented Schema 10

THE DATA MAPPING PROCESS 12

PRELIMINARY WORK WITH OTHER DATA TYPES 14

SUMMARY AND CONCLUSIONS 14

ACKNOWLEDGMENTS 16

REFERENCES ll

DISTRIBUTION LIST I9

REPORT DOCUMENTATION 20

Re-Engipeering a Relational Database System to Produce a
Prototype Object-Oriented Geophysical Database System

Julia Hodges
Shekar Ramanathan

Susan Bridges

Abstract
This document provides a description of (1) the design and development of a

prototype object-oriented geophysical database system, and (2) the development of a re-

engineering process for mapping from an existing relational database to an object-oriented

database. Although it is widely recognized that the object-oriented approach has many

advantages over traditional relational technology for scientific databases, one cannot ignore

the large investments that have been made in existing relational databases. The re-

engineering process described in this document provides a systematic method for (1)

mapping from an existing relational schema to an object-oriented schema and for (2)

mapping the actual data from the relational database into an object-oriented database.

Introduction
It is now widely recognized that an object-oriented database paradigm is more

suitable than the relational model for scientific, engineering, and geographic information

systems (Bertino and Martino 1991; Bhargava 1992). There are already many relational

database systems in use, however, and the owners of these systems are not likely to choose

to throw away the existing databases in order to move to object-oriented database

technology. Therefore there is a need for a re-engineering process that can map an existing

relational schema onto an object-oriented schema in a systematic way, then map the actual

data from the relational database into an object-oriented database. In this paper, we

describe our work in defining such a re-engineering process. We also describe how we

have used the portions of this process that we have already defined to build a prototype

object-oriented geophysical database from an existing relational database.

We begin with a summary of the advantages for scientific applications offered by

the object-oriented database paradigm. We then describe the different kinds of data to be

stored in the prototype object-oriented database system. Next we discuss the design of the

object-oriented schema for the portion of the database which has been the focus of most of

2
the work done so far (i.e., the grid data). We also describe the re-engineering process that

was used to load the grid data by mapping from the existing relational grid data to the

object-oriented grid data. Then we describe the preüminary work that has been done in the

development of an object-oriented representation for other types of geophysical data stored

in the relational database system. Finally we provide a summary and conclusions.

Motivation for Object-Oriented Approach
Blaha, Premerlani, and Rumbaugh (1988) provided four criteria for judging the

"merit" of a database design:

1. performance: Does the structure of the database promote
the availability of the data?; can users quickly retrieve
and update relevant data?;

2. integrity: To what extent does the database guarantee
that correct data is stored? (the definition of "correct"
depends on the application);

3. understandability: How coherent is the structure of the
database to end users, other database architects, and the
original designers after a period of time?;

4. extensibility: How easily can the database be extended to
new applications without disrupting ongoing work?

Engineering and scientific applications may be characterized by the need for

handling complex data. That is, such an application may be required to deal with real-

world objects which are structurally complex. An acoustic image, for example consists of

rectangular cells called texels (Reed and Hussong 1989). Each texel, in turn, consists of a

number of pixels. Object-oriented database systems allow an image to be described as a

single complex entity, whereas relational systems require that the image be decomposed

(or, in relational terminology, normalized) into multiple tables, with the different tables

describing the components of an image. The end result is that the semantics of the entity

being modeled are scattered across multiple relations rather than being packaged into a

single object. The object-oriented approach allows a user to access the complex object as a

whole as well as to access individual components of the object. Thus, for complex data,

the object-oriented model meets the first and third criteria given above better than the

relational model does.
The referential integrity constraints that must be enforced in relational database

systems are the result of certain limitations of the relational model:

• the requirement that complex entities must be decomposed into a

collection of two-dimensional tables, and

3
• the fact that relationships in a relational database are represented

implicitly (such as through the use of foreign keys) rather than

explicitly.
Consider, for example, an application in which we wish to represent students' class

schedules. A relational schema for this application is shown in Figure 1. The attributes

that form the primary key for each relation are underlined.

STUDENT (ID, name, classification)

CLASS frmirse number, coursejiame, time, place)

ENROLLED nrn. course number)

Figure 1. Relational Schema for Classes

What are the referential integrity constraints with which we must be concerned in

this application? First, we must be sure that we do not enrpll a student in a class that is not

being offered. Second, we must be sure that we do not enroll a non-existent student in a

class. Thus, any time that we store a new tuple in the ENROLLED relation, we must make

sure that the student ID number already exists in the STUDENT relation and the course

number already exists in the CLASS relation. (There are other integrity constraints that we

would want to maintain, such as ensuring that no student is enrolled in two different

classes at the same time of day, but we will not consider those here.) If the relational

DBMS that we are using does not provide a mechanism for defining referential integrity

constraints, then we must rely on each application program to check properly for any

integrity violations.
The entity-relationship (ER) model offers some advantages over the relational

model for capturing the semantics (or meaning) of the data in a database. For example, the

ER model, originally defined by Chen (1976), makes a distinction between entities and

relationships. In an ER design for our previous example (Figure 1), STUDENT and

CLASS would be entities, whereas ENROLLED would be a relationship. In the relational

model, relationships are represented using either foreign keys (for one-to-many

relationships) or as separate relations (for many-to-many relationships). Thus the

distinction between an entity and a relationship is blurred in the relational model. In

addition, the ER model makes the mappings between entities involved in a relationship

(one-to-one, one-to-many, or many-to-many) explicit, whereas this information is merely

4
implied in a relational design. There are no commercial DBMSs based on the ER model,

however, so that the ER model is frequently used as a design tool, with the resulting design

being transformed into a relational schema which is then implemented using a relational

DBMS. The popularity of the ER model as a design tool is reflected in the use of its

concepts in many database design tools and the fact that there has been an annual

international conference on the ER approach for more than ten years (Elmasri and Navathe

1994).
Relational database management systems (DBMSs) are attractive for a number of

reasons (Blaha, Premerlani, and Rumbaugh 1988). Relational tables provide a very simple

way of representing data.. The relational model is theoretically sound and well understood.

Unlike the ER model, it is supported by a number of commercial DBMSs. Yet it is the

simplicity of the relational model that makes it unsuitable for many complex applications.

The requirement that relational data must fit into a two-dimensional table is too restrictive

for representing more complex data. The ER model provides a slightly more abstract

representation than the relational model (e.g., relationships are expressed explicitly in the

ER model). But it does not provide a "substructure for entities and relationships" (Blaha,

Premerlani, and Rumbaugh 1988). For example, the ER model does not support entities

which may have subcomponents that are also entities, each of which may have

subcomponents, etc.
The object-oriented paradigm supports the modeling of complex data and

interrelationships "in a natural way" (Bertino and Martino 1991). That is, the model

supports the definition of objects which have a complex structure, groupings of objects into

classes, and the arrangement of object classes into an inheritance hierarchy. Not only does

the model support the structural definition of an object, but "also the modeling of object

behaviors and dynamic constraints" (Bertino and Martino 1991). The traditional relational

model has no mechanisms for defining complex objects as single entities, for explicitly

defining relationships among entities, or for defining the behavior of an object as a part of

the definition of the object.
Object-oriented database management systems support schema evolution (the

changing of the definition of the database) because many scientific and engineering

applications are dynamic and need this capability. Relational database management systems

provide some limited schema evolution capabilities such as adding new relations and

adding new attributes to existing relations, but they do not support changes as complex as

those found in many object-oriented database management systems (Bertino and Martino

1991).

5
Object-oriented database management.systems also support versions (different

states of the same object). As with schema evolution, the support of versions has been

dictated by the needs of the applications. Bertino and Martino (1991) have described the

need for version support as being "inherent in applications that are exploratory and

evolutionary." For example, consider the processing of hull-mounted wide-swath

bathymetric sonar data being done at NAVOCEANO at the Stennis Space Center. The

scientists working with the imagery data need to derive mosaics and ocean bottom

classifications, validate bathymetry data, and correlate the acoustic data with other sensor

data. The acoustic imagery data can complement bathymetry data in providing geologists

and engineers with ocean bottom topography. The acoustic imagery data provides

information about the "microroughness, texture, and back scatter properties of the ocean

floor" (Lingsch and Robinson 1992). Scientists may use several different techniques to

derive mosaics from image data. The mosaics derived by different mechanisms could be

represented as different versions. This will support testing of new algorithms for

processing the image data in order to determine which ones reveal the features needed to

validate new models. The support for schema evolution and versions gives the object-

oriented DBMSs the ability to meet the fourth criterion given above in a more powerful

manner than relational DBMSs.
The choice of which database model to use is dependent on the characteristics of the

application which the database system is intended to model. The relational model was

designed to support traditional data processing applications such as inventory control and

order processing. The analysis of large quantities of scientific data, however, requires

capabilities not provided in the relational model. As described by DeSanti and Gomsi

(1994), such applications "are very dynamic and their database schema is usually very

complex," and they require "the ability to handle the creation and evolution of schema of

arbitrary complexity without a lot of programmer intervention." This is exactly the type of

application for which object-oriented database systems are most useful.

Scientists at the Mississippi State University Center for Air Sea Technology

(CAST), which is located at the Stennis Space Center, expressed an interest in pursuing the

possibility of using object-oriented technology for storing large quantities of geophysical

data currently stored in a relational database. In 1993, we evaluated several object-oriented

database management systems for CAST and recommended that they purchase ObjectStore

(Ramanathan and Hodges 1994a). Since then, we have worked closely with the CAST

scientists in the design of an object-oriented schema for the data and in the development of

a windows-based user interface for the resulting database system.

Description of the Geophysical Data
To demonstrate the advantages of the object-oriented approach for a geophysical

database, we designed and implemented an object-oriented database system that contains a

portion of the data found in the NEONS database system. NEONS (Naval Environmental

Operational Nowcasting System) is a comprehensive system that includes software and

procedures to support the "(a)nalysis of environmental data" (Jurkevics 1992). The

NEONS database is a relational database that consists of four realms: primary, associative,

descriptive, and geographic. The primary realm contains environmental data of four types:

image data, grid data, latitude-latitude-time (lit) data, and line data. The associative realm

contains information about the primary data such as time coverage, storage format,

resolution, and grid geometry. The descriptive realm contains "descriptions of satellites,

sensors, channels, orbital elements, grid geometries, and projections." The geographic

realm "contains time-invariant data about the earth's geography" such as "coastlines, rivers,

political boundaries, topography, bathymetry, and land-surface type" (Jurkevics 1992).

All of the primary data in the NEONS database is stored as packed bitstreams in

order to save space. This introduces additional overhead for the packing and unpacking of

the data, but the NEONS database designers thought that the decreased data volume would

improve the overall I/O performance (Jurkevics 1992). The image data is packed into

bitstreams, then stored in external files. The other three types of primary data are packed

into bitstreams and then stored in relational tables.

The image data consists of multi-band images and overlays. These images can be

in either satellite or registered coordinates. The images can be of any size, number of

bands, and resolution. The grid data consists of the output produced by atmospheric and

oceanographic analytical models, user-defined products, and gridded climatology data. Lit

data represents measurements or reports taken at a particular point (latitude and longitude)

at a particular time. The lit data is the most varied of the different types of primary data. It

consists of "conventional environmental reports, earth-located satellite scene stations, and

point climatology data" (Jurkevics 1992). Line data consists of a series of point

observations (i.e., lit data) along a curved line.

For our prototype system, which we call ObjNEONS, we began by focusing on the

grid data in the primary realm. The primary grid data is actual data values for various

parameters (such as salinity or sea-surface temperature) at different grid points. We

designed and developed an object-oriented schema for the grid data, then loaded the grid

database by writing routines to map from the NEONS grid data to the object-oriented grid

7
database by writing routines to map from the NEONS grid data to the object-oriented grid

data. We also designed and implemented a windows-based interface for the object-oriented

grid database. We have done some preliminary work on the image data and lit data

portions of the object-oriented database. Most of our discussion in this document will be

about the grid data portion of the database, although we do provide a brief description of

the work done on the image and lit data.
We decided to store the primary data in our prototype system without packing the

data. Eventually, we would like to conduct some performance experiments to compare the

NEONS relational database and our object-oriented database in terms of the amount of

storage required, the response time required for various operations, and the I/O time

required for various operations.

Design of the Object-Oriented Grid Database Schema
In the design of the ObjNEONS database, we wanted to "exploit all the features

provided by the object-oriented model to provide a view that represents the real world as

much as possible" (Ramanathan and Hodges 1994b). We first had to familiarize ourselves

with the grid data and what it represented to the scientists. We did this by producing an ER

diagram for the relational grid data. The process for producing an ER model from a

relational schema is called reverse engineering. It is the reverse of a well-known

process for producing a relational schema from an ER diagram (described by Elmasri and

Navathe (1994)). We then augmented the resulting ER diagram with domain information

in order to produce an object-oriented schema, a process called forward engineering.

The entire process of mapping from relational to ER to object-oriented is called re-

engineering the database. This process, which is described later in this document, is

summarized in Figure 2.
Initially, we provided an object-oriented view of the existing relational database

(Ramanathan 1994) and developed a windows-based interface that allowed access to the

data through this view (Wu 1993). This provided the CAST scientists with the opportunity

to try out an object-oriented approach before investing in a new DBMS. Following an

evaluation of commercial object-oriented DBMSs (Ramanathan and Hodges 1994a), CAST

purchased ObjectStore. We then began the implementation of the object-oriented grid

database system, including a graphical user interface called Grid Data Browser (Koduri

1994).

8
The Re-Engineering Process: Mapping from Relational to Object-Oriented

Our primary motivation for re-engineering an existing relational database rather than

developing an object-oriented database "from scratch" is to be able to make use of the

existing relational database to populate the object-oriented database. A number of

approaches to this process have been reported in the literature. Markowitz, in collaboration

with Shoshani (1989) and Makowsky (1990), proposed a process for reverse engineering a

relational database schema to an extended entity-relationship (EER) structure. This is

accomplished by considering key and inclusion dependencies defined in the relational

schema. However, their approach assumes that the relational schema is well-designed,

something which is often not true in practice.

Chiang, Barron, and Storey (1994) have defined a knowledge-based approach to

extracting EER structures from a relational database. Premerlani and Blaha (1994) have

proposed an approach for extracting an object-oriented database schema from a relational

schema. Their approach makes use of a number of tools, including OMTool (an editor that

produces object diagrams using OMT, or object-modeling technique, notation), SQL,

AWK scripts, and various other programs and macros. In addition, they make use of

manual analysis of the data. Based on their case studies, they have concluded that "[a]

purely mechanical approach to reverse engineering of databases does not consider the

transformations designers often apply in moving from design to implementation." Thus

they think that the best approach is to use a "flexible, interactive approach" that provides the

designer with "a suite of flexible, loosely coupled tools."

As with the other approaches, our re-engineering process is concerned in part with

mapping from a relational schema to a schema represented by some other model. We have

chosen to map to an object-oriented database schema for the reasons provided in an earlier

section. Unlike other approaches that have been described in the literature, however, we

have not limited our re-engineering process to schema transformation. We have taken a

more extensive view of the process by including the mapping of the actual data from a

relational database to an object-oriented database.

We shall first discuss the process of mapping from a relational schema to an object-

oriented schema. After we have described the schema mapping process, we shall discuss

the data mapping process, during which the data from a relational database is mapped to an

object-oriented database.

Relational
Schema

Relational-to-ER
Mapping

(Reverse Engineering)

ER schema

t
Domain

Information

ER-to-Object-Oriented
Mapping

(Forward Engineering)

Object-oriented
schema

Figure 2. Mapping a Relational Schema
to an Object-Oriented Schema

The Schema Manning Process
We used an ER schema as an intermediate representation during the process of

mapping from a relational schema to an object-oriented schema. This was a convenient

way of familiarizing ourselves with the contents and semantics of the grid portion of the

NEONS database. We found this part of the process, which is called reverse engineering,

to be most helpful because it gave us a better set of questions to ask the CAST scientists

when we interviewed them about the semantics of the data. Once this part of the process

was done, we then mapped the resulting ER schema to an object-oriented schema using a

forward engineering process.

10

Reverse Engineering: "From a Relational Schema to an ER Schema

As stated earlier, the reverse engineering process is conceptually the reverse of a

well-known technique for producing a relational schema from an ER schema (Elmasri and

Navathe 1994). In the relational model, both entities and relationships are represented as

relations. So we had to examine each relation to determine if it represented an entity or a

relationship. Those relations which contained no foreign keys were interpreted as

representing entities. The presence of foreign keys in the relations helped us to establish

the many-to-many (N:M) and one-to-many (1:N) relationships among the entities.

In this process, we had to be sure that the relationships implied in the relational

database schema were explicitly represented in the ER diagram. For example, the

appearance of one table's primary key as a foreign key in another table implied a

relationship between the two entities represented by the tables. We determined the

cardinality of the relationships from the documentation available for the NEONS database

(Jurkevics 1992) and from inspection of the data stored in the database (Ramanathan and

Koduri 1995). When inferring the cardinality of a relationship through inspection of the

data, we asked the CAST scientists to confirm our conclusion to ensure that the presence of

a certain cardinality was not merely incidental.
The ER diagram was refined through consultation with the CAST scientists. It is

certainly possible that more than one reasonable ER diagram could have been produced

through "alternate interpretations of the structure and data" in the relational database

(Premerlani and Blaha 1994). Once we felt that we had a reasonable ER diagram, we used

it as a starting point for producing the object-oriented schema. From the ER diagram, we

were able to define a preliminary set of object classes and their relationships.

Forward Engineering: From an ER Schema to an Object-Oriented Schema

All of the entities in the ER schema were represented as object classes in the object-

oriented schema. The interpretation of the relationships in the ER schema was not as

straightforward. The ER model is limited in its representation of relationships. In the ER

model, a relationship is a mapping between entity types, with the cardinality of the mapping

being 1:1, 1:N, or N:M. This is the extent of the semantics of the relationship that can be

represented in an ER relationship. In an object-oriented model, however, there may be a

number of different types of relationships. For example, there may be associations (similar

to the ER concept of a relationship), aggregations (special associations that represent "a-

11
part-of' relationships), and generalizations (superclass-subclass inheritance hierarchy

relationships) (Rumbäugh et al. 1991).
We first identified .generalizations. Premerlani and Blaha (1994) have suggested

several clues that may be indicative of a generalization relationship in a relational schema.

Some simple adaptation makes these clues also useful for ER Schemas. For example, the

following patterns may be generalization relationships:

• ER relationships consisting entirely of foreign keys from various

entities
• entities in which many attributes from other entities have been

replicated
We then identified those associations that represented a-part-of relationships. We

represented those as aggregations. The ability to recognize aggregations requires "semantic

understanding" (Premerlani and Blaha 1994), so we relied upon the CAST scientists for

additional domain information. This information was obtained from multiple interviews

with various scientists at CAST. Methods for deriving object-oriented Schemas from ER

diagrams cannot recognize such relationships without the benefit of domain information

(Ramanathan and Koduri 1995).
By talking to scientists at CAST about the semantics of the data and how the data is

used, we were able to incorporate additional semantic information into the design of the

object-oriented schema. As a result, we were able to identify additional object classes for

the grid data that would not have been recognized by the relational-to-ER-to-object-oriented

process otherwise. A shortcoming of this part of the process is that the extraction of the

additional domain information is not an automated process.
We also obtained some of the semantic information we needed about the primary

grid data from the descriptive and associative realms. For example, the descriptive realm

contains information about generic attribute names such as geom_parmJ. The

interpretation of the attribute geomjyarmj is different for different types of grid geometry

projections. The associative realm contains information about the primary data such as the

numerical model that was used, the grid geometry that was used, and where the

measurements were made. Thus our object-oriented approach to representing the primary

grid data in the NEONS database was actually a unifying approach that made use of the

appropriate information from the descriptive and associative realms as well as the primary

realm. The portion of the NEONS database made available to us for this project contained

two primary realm relations, two associative realm relations, and eight descriptive realm

12
relations. The object-oriented schema produced from the relational-to-ER-to-object-

oriented mapping is shown in Figure 3.

The Data Mapping Process
The data mapping process is the process of mapping the data from the NEONS

database (where it is stored as relational tuples) to the object-oriented database (where it is

stored as complex objects). One way of accomplishing this is by providing an object-

oriented view of the existing relational data, which is what we first did as an initial

investigation into the feasibility of using an object-oriented approach (Ramanathan 1994).

However, this approach, of providing an object-oriented wrapper around the existing

relational database has two major disadvantages. First, it requires that the object-oriented

view must be modified whenever the relational schema is modified. Second, it represents

an additional expense at run-time due to the need to dynamically map the relational tuples to

objects. Another way of accomplishing the data mapping is to actually port the data from

the relational database into an object-oriented database that is managed by an object-oriented

DBMS. This approach has the advantage of being a one-time operation. Unfortunately,

most object-oriented DBMSs do not provide data loading routines because of the

complexity of the data caused by embedded objects, relationships, inheritance hierarchies,

etc. (Wiener and Naughton 1994).
We have populated the ObjNEONS database using a simple approach to the data

porting problem (Ramanathan and Koduri 1995). This was done using C++ and

embedded SQL. ObjectStore is tightly integrated with the C++ programming language,

providing extensions for the handling of persistent data. Some of the features of

ObjectStore that were used for the data porting were inverses, collections, and queries.

Inverses provides a mechanism for automatically maintaining referential integrity between

objects. Collections is a class library used to manage sets of objects. Queries is a feature

that provides for the retrieval of objects from a collection based on some predicate (i.e.,

some condition that evaluates to either true or false).
We provided an application programming interface called Grid Data Browser that

provides users with a graphical interface to the grid data (Koduri 1994; Ramanathan and

Koduri 1995). The interface "resides primarily in the methods attached to the class

definitions of the ObjNEONS objects" (Ramanathan and Koduri 1995). The main

components of the Grid Data Browser are shown in Figure 4. Grid Data Browser was

implemented using the Motif toolkit and runs on X Windows. The front-end component

sends user requests to InfoManager, which handles the interactions with the

13

Figure 3. Object-Oriented Grid
Database Diagram

14
ObjNEONS database. InfoManager executes the user query, then returns the result to the

front-end component.' All of the database operations are encapsulated in InfoManager, with

the front-end of the user interface being completely decoupled from these operations. This

makes it possible for the user interface to be adapted for use with other databases by

modifying only the back-end component, leaving the front-end component unchanged.

Preliminary Work with Other Data Types

With the advice of the CAST scientists, we chose to work on the grid data portion

of the NEONS database first. However, we have done some preliminary work on two of

the other data types: the latitude-longitude-time (lit) data and the image data. Using the re-

engineering process, we produced object models for the lit data and the image data, then

loaded some sample data of each type into a corresponding object-oriented database. That

is, we created a prototype object-oriented lit database and a prototype object-oriented image

database.
The lit data consists of a set of data points representing readings taken along a line

or curve. The data represents a variety of information such as conventional environmental

reports, point climatology data, and earth-located satellite scene stations (Jurkevics 1992).

In our initial prototype object-oriented lit database, we included only 15 of the different

kinds of lit data in our object model and actually loaded the data for only three of these. We

also developed a simple user interface to demonstrate that the lit data had been correctly

stored and could easily be retrieved from the object-oriented database (Kalluri 1995).

Unlike the other data types stored in NEONS, image data is stored as flat files of

binary data rather than being stored in relational tables. In our prototype object-oriented

image database, we have stored not only satellite images, but also information about the

satellites themselves (orbits, sensors, channels, etc.). Thus we have stored not only the

raw images, but also descriptive information about them, in a manner similar to what we

had done with the grid data. We also developed a simple interface to demonstrate that the

images had been correctly stored and could easily be retrieved from the object-oriented

database (Cheng 1995).

Summary and Conclusions
In this document, we have described the development of a prototype object-oriented

geophysical database through the re-engineering of an existing relational database. The re-

engineering process allowed us not only to map the relational schema to an object-oriented

schema, but also to map the relational data to objects. We have described this process and

15

User Interface

t
USER

ObjNEONS

Figure 4. Grid Data Browser

its application to the grid data portion of the NEONS relational database in some detail. We

have also briefly described the preliminary work that has been done in re-engineering the lit

data and image data portions of NEONS.
Our re-engineering process requires that we augment the syntactic information

about the structure of the relational database with semantic information about the data that is

provided by domain experts. Whereas many database re-engineering efforts address only

schema mapping, our process includes both schema mapping and data mapping. It is our

opinion that it is important to include data mapping in this process because of the large

quantities of data available in existing databases.

16
We intend to address ways in which the semantic information may be formalized so

that the process of incorporating this information into the object-oriented design is a well-

defined, systematic one rather than the informal approach used in current schema mapping

efforts. We also intend to develop database loading algorithms that will allow one to port

data from a relational database to an object-oriented database. Wiener and Naughton

(1994) have done some work in the development of routines for the bulk loading of data

into an object-oriented database. Their methods are intended to handle different types of

associations, but they do not address inheritance hierarchies. Also, the source of the data

for the object-oriented database is simply data files rather than data already stored in some

other database such as a relational database. We plan to modify their approach so that it

will handle inheritance hierarchies and be able to load an object-oriented database from a

relational database.

Acknowledgments

The authors are indebted to a number of people for their contributions to this work.

We are especially grateful to Mr. James Corbin, the director of the Center for Air Sea

Technology (CAST), for his support and encouragement for our efforts. We have made

great use of technical information that he has supplied us. We have relied upon a number

of CAST scientists for advice and guidance during the development of the object-oriented

Schemas and the user interfaces. Most notable among these are Mr. Ramesh

Krishnamagaru, Mr. Valentine Anantharaj, Ms. Cheryl Cesario, and Mr. Steve Foster.

The CAST object-oriented database project has included a number of graduate

students during its duration, all of whom have made important contributions to this work.

We are grateful to Dongmei Wu for her work on the user interface for the early system that

provided an object-oriented view of the relational database. We are also grateful to Sridhar

Koduri for the development of the Grid Data Browser as well as for some of the early work

done on the design of an object-oriented schema for the image data. We are also

appreciative of the contributions made by Vark Kalluri and Dawen Cheng in the areas of the

lit data and the image data, respectively. All of these students attended weekly meetings for

the CAST team, so that the results have truly been produced from a collaborative effort.

17
References

Bertino, Elisa, and Lorenzo Martina 1991. Object-oriented database management systems:
Concepts and issues. Computer 24 (April): 33-47.

Bhargava, Bharat. 1992. Transition from a relation to object model implementation. In The
Proceedings of the ISMM First International Conference on Information and
Knowledge Management, held in Baltimore, MD, November 8-11, 1992, by The
International Society for Mini and Microcomputers - ISMM, 46-50.

Blaha, Michael R., William J. Premerlani, and James E. Rumbaugh. 1988. Relational
database design using an object-oriented methodology. Communications of the ACM
31 (April): 414-27.'

Chen, P.P. 1976. The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems 1 (March): 9-36.

Cheng, Dawen. 1995. Development of an object-oriented image database system. Master's
project, Mississippi State University.

Chiang Roger, Terence Barron, and Veda Storey. 1994. Reverse engineering of relational
databases: Extraction of an EER model from a relational database. Data and
Knowledge Engineering 10 (12)" 107-42.

DeSanti, Mike, and Jeff Gomsi. 1994. A comparison of object and relational database
technologies. Object Magazine 3 (January): 51, 56-7.

Elmasri, Ramez, and Shamkant B. Navathe. 1994. Fundamentals of database systems. 2d
ed. Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc.

Jurkevics Andrew 1992. Database design document for the Naval Environmental
Operational Nowcasting System Version 3.5, June 1, 1992, Monterey, CA: Naval
Oceanographic and Atmospheric Research Laboratory.

Kalluri, Vark. 1995. Object-oriented Geophysical database for latitude, longitude, and time
(lit) data. Master's project, Mississippi State University.

Koduri, Sridhar. 1994. Grid data browser: A tool to browse the data in an object-oriented
database. Master's project, Mississippi State University.

Lingsch, Stephen C, and Christopher S. Robinson. 1992. Acoustic imagery using a
multibeam bathymetric system. Marine Geodesy 15:81-95.

Markowitz V.M., and JA. Makowsky. 1990. Identifying extended entity-relationship
object structures in relational schemas. IEEE Transactions on Software Engineering
16 (August): 777-90.

Markowitz, Victor M., and Arie Shoshani. 1989. On the correctness of representing
extended entity-relationship structures in the relational model. In Proceedings of the
1989 ACM SIGMOD International Conference on the Management of Data,

18
Portland, Oregon, June 1989 edited by James Clifford, Bruce Lindsay, and David
Maier, 430-9vNew York: ACM Press. \ v

Piatetsky-Shapiro, Gregory, and William J. Frawley, eds. 1991. Knowledge discovery in
databases. Menlo Park, CA: AAAI Press/The MIT Press.

Premerlani, William J., and Michael R. Blaha. 1994. An approach for reverse engineering
of relational databases-. Communications of the ACM 37 (May): 42-9, 134.

Ramanathan, Chandreshekar. 1994. Providing object-oriented access to a relational
database. In Proceedings of the 32nd Annual ACM Southeast Conference,
Tuscaloosa, AL, March 17-18, 1994, edited by David W. Cordes and Susan V.
Vrbsky, 162-5. New York: Association for Computing Machinery.

Ramanathan, Chandrashekar, and Julia Hodges. 1994a. An object-oriented prototype for a
geophysical database subtask: Evaluation of commercial object-oriented DBMS's. In
1994 Student Research Projects, Technical Note 04-94, September 20, 1994, 11-5,
Stennis Space Center, MS: Mississippi State University Center for Air Sea
Technology.

Ramanathan, Chandrashekar, and Julia Hodges. 1994b. An object-oriented prototype for a
geophysical database subtask: Prototype Implementation. In 1994 Student Research
Projects, Technical Note 04-94, September 20, 1994, 19-27, Stennis Space Center,
MS: Mississippi State University Center for Air Sea Technology.

Ramanathan, Chandrashekar, and Sridhar Koduri. 1995. An object-oriented prototype for
a geophysical database. In Proceedings of the Twenty-Seventh southeastern
Symposium on System Theory, March 12-14, 1995, Mississippi State, Mississippi,
170-4. Los Alamitos, CA: IEEE Computer Society Press.

Reed, Thomas Beckett IV, and Donald Hussong. 1989. Digital image processing
techniques for enhancement and classification of SeaMARC II side scan sonar
imagery. Journal of Geophysical Research 94 (B6): 7469-90.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. 1991. Object-oriented modeling and design. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

Wiener, Janet, and Jeffrey Naughton. 1994. Bulk loading into an OODB: A performance
study, Technical Report TR-1218a, November 1994, Madison, Wisconsin:
University of Wisconsin-Madison.

Wu, Dongmei. 1993. A window-based intelligent interface for defining descriptive data in
the Navy Environmental Operational Nowcasting System (NEONS) database. In
1993 Student Research Projects, Technical Note 02-94, December 31, 1993, 8-10,
Stennis Space Center, MS: Mississippi State University Center for Air Sea
Technology.

19

DISTRIBUTION LIST

1. Scientific Officer (Code 1.232)
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000
Dr. Tom Curtin (3 copies)

2. Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22304-6145
- Two Copies

3. Defense of the Navy
Office of Naval Research Resident

Representative
101 Marietta Tower-Suite 2805
101 Marietta Street
Atlanta, GA 30303

4. Director
Naval Research Laboratory
Attention: Code 2627
Washington, DC 20375

5. Oceanographer of the Navy
U.S. Naval Observatory
34th and Massachusetts
Washington, DC 20392

6. Naval Research Laboratory
Code 7320
Stennis Space Center, MS 39529

7. Technical Director
Naval Oceanographic Office
Stennis Space Center, MS 39529

8. Commanding Officer
Fleet Numerical Meteorology

Oceanographic Center
Monterey, CA 93943-5000

9. Technical Director
Naval Oceanography Command
Building 1020
Stennis Space Center, MS 39529

10. CDR David Markham
Space and Naval Warfare Systems

Command (PMW 175-3B)
2451 Crystal Drive
Arlington, VA 22245-5200

11. Department of Computer Science
Mississippi State University
Mississippi State, MS 39762
- Dr. Julia Hodges
- Dr. Susan Bridges
- Mr. Shekar Ramanathan

12. Center for Air Sea Technology
Mississippi State University
Stennis Space Center, MS 39529
- Mr. Jim Corbin
- Dr. Lanny Yeske
- Mr. Steve Foster
- Mr. Ramesh Krishnamagaru
- Mr. Valentine Anantharaj

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of
this collection of information, including suggestions for reducing this burden, to Washington Headquartere Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. Agency Use Only (Leave blank). 2. Report Date.

20 JUNE 1995

3. Report Type and Dates Covered.

^ TECHNICAL REPORT
4. Title and Subtitle.

RE-ENGINEERING A RELATIONAL DATABASE SYSTEM TO PRODUCE
A PROTOTYPE OBJECT-ORIENTED GEOPHYSICAL DATABASE SYSTEM

6. Authors).

J. HODGES, S. RAMANATHAN, AND S. BRIDGES

5. Funding Numbers.

Program Element No.

Project No.

Task No.

Accession No.

7. Performing Organization Name(s) and Address(es).

MISSISSIPPI STATE UNIVERSITY
CENTER FOR AIR SEA TECHNOLOGY
STENNIS SPACE CENTER, MS 3-9529-6000

8. Performing Organization
Report Number.

CAST TECHNICAL
REPORT 01-95

9. Sponsoring/Monitoring Agency Name(s) and Address(es).

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
CODE 1242
ARLINGTON, VA 22217

10. Sponsoring/Monitoring Agency
Report Number.

CAST TECHNICAL
REPORT 01-95

11. Supplementary Notes.

RESEARCH PERFORMED UNDER THE OFFICE OF NAVAL RESEARCH'CONTRACT/GRANT
NUMBER N00014-92-J-4109

12a. Distribution/Availability Statement.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

12b. Distribution Code.

13. Abstract (Maximum 200 words).

This document-provides a description of (1) the design and development of a proto-
type object-oriented geophysical database system, and (2) the development of a
re-engineering process for mapping from an existing relational database to an
object-oriented database. Although it is widely recognized that the object-
oriented approach has many advantages over traditional relational technology
for scientific databases, one cannot ignore the large investments that have been
made in existing relational databases. The re-engineering process described
provides a systematic method for (1) mapping from an existing relational schema
to an object-oriented schema, and for (2) mapping the actual data from the rela-
tional database into an object-oriented database.

14. Subject Terms.

(U) Technical Report: (U) Object-Oriented

(U) Database (U) Relational (U) Re-Engineering

15. Number of Pages.
20

16. Price Code.

17. Security Classification
of Report.
UNCLASSIFIED

18. Security Classification
of This Page.

UNCLASSIFIED

19. Security Classification
of Abstract.

UNCLASSIFIED

20. Limitation of Abstract.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

